Generatives Deep Learning
von O'Reilly
Generatives Deep Learning
von O'Reilly
inkl. Ust.
41,10 €
Lieferung
Lieferung am Do. 04.09.2025
Händler*in
BMS
Der*die Händler*in gewährt für dieses Produkt eine Widerrufsfrist von 30 Tagen. Für Details lies bitte die Widerrufsbelehrung und das -formular sowie die jeweiligen Händler-AGB.
Produktdetails
Lassen Sie Ihre Deep-Learning-Modelle kreativ werden! Das Buch zeigt, wie die innovativsten Deep-Learning-Algorithmen wie Generative Adversarial Networks (GANs) und Variational Autoencoder (VAEs) funktionieren Für kreative Data Scientists und Programmierer, die gerne mit Code experimentieren Verwendet Python, Keras und TensorFlow Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle. David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können. Aus dem Inhalt Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen...
Infotabelle
Produktspezifikationen
Autor | David Foster; Markus Fraaß; Konstantin Mack |
Format | gebundene Ausgabe |
Sprachfassung | Deutsch |
Seiten | 310 |
Erscheinungsdatum | 2020-03-26 |
Verlag | O'Reilly |
Produktkennung
Artikelnummer | m0000BZ9M0 |
EAN | 9783960091288 |
GTIN | 09783960091288 |
Zusatzinfo und Downloads
Details zur Produktsicherheit
Herstellerinformationen |
Verantwortliche Person für die EU |
Produktdetails
Lassen Sie Ihre Deep-Learning-Modelle kreativ werden! Das Buch zeigt, wie die innovativsten Deep-Learning-Algorithmen wie Generative Adversarial Networks (GANs) und Variational Autoencoder (VAEs) funktionieren Für kreative Data Scientists und Programmierer, die gerne mit Code experimentieren Verwendet Python, Keras und TensorFlow Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle. David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können. Aus dem Inhalt Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen...
Infotabelle
Produktspezifikationen
Autor | David Foster; Markus Fraaß; Konstantin Mack |
Format | gebundene Ausgabe |
Sprachfassung | Deutsch |
Seiten | 310 |
Erscheinungsdatum | 2020-03-26 |
Verlag | O'Reilly |
Produktkennung
Artikelnummer | m0000BZ9M0 |
EAN | 9783960091288 |
GTIN | 09783960091288 |
Zusatzinfo und Downloads
Details zur Produktsicherheit
Herstellerinformationen |
Verantwortliche Person für die EU |