Machine Learning

Image Gallery
  • Machine Learning

Machine Learning

inkl. Ust.
28,77 €
Produktanzahl 1
Liefermethode
Lieferung
Lieferung am Di. 26.08.2025
 
Händler*in
BMS
Der*die Händler*in gewährt für dieses Produkt eine Widerrufsfrist von 30 Tagen. Für Details lies bitte die Widerrufsbelehrung und das -formular sowie die jeweiligen Händler-AGB.

Produktdetails

Dieses Buch richtet sich an alle, welche die enormen Potenziale maschinellen Lernens für wissenschaftliche Fragestellungen und innovative Ansätze in Studium oder Beruf nutzen möchten. Denn maschinelles Lernen eröffnet neue Möglichkeiten zum effizienten Umgang mit umfassenden, komplex strukturierten und sich schnell entwickelnden Daten. Zunächst werden Grundideen und typische Anwendungsfelder maschinellen Lernens sowie dessen Vorzüge gegenüber inferenzstatistischen Verfahren erläutert. Daran schließen praktische Hinweise dazu an, wie Daten für maschinelle Lernprozesse aufbereitet werden und wie diese durch Anpassung verschiedener Parameter möglichst optimale Ergebnisse erzielen können. Von den hierzu einsetzbaren Modellen werden die gängigsten theoretisch und anhand anschaulicher Beispiele vorgestellt. Auch auf verschiedene Optionen zur besseren Interpretierbarkeit sowie auf spezifische Limitationen von Analyseresultaten wird eingegangen. Weiterführende Anwendungsfälle und verständlich kommentierte Analysecodes sind auf dem GitHub-Repositorium zu diesem Buch auf SpringerLink online verfügbar.

Infotabelle

Produktspezifikationen

Autor
Sven Hilbert; Elisabeth Kraus; Alfred Lindl
Format
gebundene Ausgabe
Sprachfassung
Deutsch
Seiten
156
Erscheinungsdatum
2025-07-13
Verlag
Springer Fachmedien Wiesbaden GmbH

Produktkennung

Artikelnummer m0000PDDSH
EAN 9783658436483
GTIN 09783658436483

Zusatzinfo und Downloads

Dieses Buch richtet sich an alle, welche die enormen Potenziale maschinellen Lernens für wissenschaftliche Fragestellungen und innovative Ansätze in Studium oder Beruf nutzen möchten. Denn maschinelles Lernen eröffnet neue Möglichkeiten zum effizienten Umgang mit umfassenden, komplex strukturierten und sich schnell entwickelnden Daten. Zunächst werden Grundideen und typische Anwendungsfelder maschinellen Lernens sowie dessen Vorzüge gegenüber inferenzstatistischen Verfahren erläutert. Daran schließen praktische Hinweise dazu an, wie Daten für maschinelle Lernprozesse aufbereitet werden und wie diese durch Anpassung verschiedener Parameter möglichst optimale Ergebnisse erzielen können. Von den hierzu einsetzbaren Modellen werden die gängigsten theoretisch und anhand anschaulicher Beispiele vorgestellt. Auch auf verschiedene Optionen zur besseren Interpretierbarkeit sowie auf spezifische Limitationen von Analyseresultaten wird eingegangen. Weiterführende Anwendungsfälle und verständlich kommentierte Analysecodes sind auf dem GitHub-Repositorium zu diesem Buch auf SpringerLink online verfügbar.

Produktspezifikationen

Autor
Sven Hilbert; Elisabeth Kraus; Alfred Lindl
Format
gebundene Ausgabe
Sprachfassung
Deutsch
Seiten
156
Erscheinungsdatum
2025-07-13
Verlag
Springer Fachmedien Wiesbaden GmbH

Produktkennung

Artikelnummer m0000PDDSH
EAN 9783658436483
GTIN 09783658436483