Lectures on p-adic Differential Equations
von Springer US
Lectures on p-adic Differential Equations
von Springer US
inkl. Ust.
109,99 €
Lieferung
Lieferung am Mi. 10.09.2025
Händler*in
BMS
Der*die Händler*in gewährt für dieses Produkt eine Widerrufsfrist von 30 Tagen. Für Details lies bitte die Widerrufsbelehrung und das -formular sowie die jeweiligen Händler-AGB.
Produktdetails
The present work treats p-adic properties of solutions of the hypergeometric differential equation d2 d ~ ( x(l - x) dx + (c(l - x) + (c - 1 - a - b)x) dx - ab)y = 0, 2 with a, b, c in 4) n Zp, by constructing the associated Frobenius structure. For this construction we draw upon the methods of Alan Adolphson [1] in his 1976 work on Hecke polynomials. We are also indebted to him for the account (appearing as an appendix) of the relation between this differential equation and certain L-functions. We are indebted to G. Washnitzer for the method used in the construction of our dual theory (Chapter 2). These notes represent an expanded form of lectures given at the U. L. P. in Strasbourg during the fall term of 1980. We take this opportunity to thank Professor R. Girard and IRMA for their hospitality. Our subject-p-adic analysis-was founded by Marc Krasner. We take pleasure in dedicating this work to him. Contents 1 Introduction . . . . . . . . . . 1. The Space L (Algebraic Theory) 8 2. Dual Theory (Algebraic) 14 3. Transcendental Theory . . . . 33 4. Analytic Dual Theory. . . . . 48 5. Basic Properties of", Operator. 73 6. Calculation Modulo p of the Matrix of ~ f,h 92 7. Hasse Invariants . . . . . . 108 8. The a --+ a' Map . . . . . . . . . . . . 110 9. Normalized Solution Matrix. . . . . .. 113 10. Nilpotent Second-Order Linear Differential Equations with Fuchsian Singularities. . . . . . . . . . . . . 137 11. Second-Order Linear Differential Equations Modulo Powers ofp ..... .
Infotabelle
Produktspezifikationen
Autor | Bernard Dwork |
Format | gebundene Ausgabe |
Sprachfassung | Englisch |
Seiten | 310 |
Erscheinungsdatum | 2011-11-06 |
Verlag | Springer US |
Produktkennung
Artikelnummer | m0000P8L3X |
EAN | 9781461381952 |
GTIN | 09781461381952 |
Zusatzinfo und Downloads
Details zur Produktsicherheit
Herstellerinformationen |
Verantwortliche Person für die EU |
Produktdetails
The present work treats p-adic properties of solutions of the hypergeometric differential equation d2 d ~ ( x(l - x) dx + (c(l - x) + (c - 1 - a - b)x) dx - ab)y = 0, 2 with a, b, c in 4) n Zp, by constructing the associated Frobenius structure. For this construction we draw upon the methods of Alan Adolphson [1] in his 1976 work on Hecke polynomials. We are also indebted to him for the account (appearing as an appendix) of the relation between this differential equation and certain L-functions. We are indebted to G. Washnitzer for the method used in the construction of our dual theory (Chapter 2). These notes represent an expanded form of lectures given at the U. L. P. in Strasbourg during the fall term of 1980. We take this opportunity to thank Professor R. Girard and IRMA for their hospitality. Our subject-p-adic analysis-was founded by Marc Krasner. We take pleasure in dedicating this work to him. Contents 1 Introduction . . . . . . . . . . 1. The Space L (Algebraic Theory) 8 2. Dual Theory (Algebraic) 14 3. Transcendental Theory . . . . 33 4. Analytic Dual Theory. . . . . 48 5. Basic Properties of", Operator. 73 6. Calculation Modulo p of the Matrix of ~ f,h 92 7. Hasse Invariants . . . . . . 108 8. The a --+ a' Map . . . . . . . . . . . . 110 9. Normalized Solution Matrix. . . . . .. 113 10. Nilpotent Second-Order Linear Differential Equations with Fuchsian Singularities. . . . . . . . . . . . . 137 11. Second-Order Linear Differential Equations Modulo Powers ofp ..... .
Infotabelle
Produktspezifikationen
Autor | Bernard Dwork |
Format | gebundene Ausgabe |
Sprachfassung | Englisch |
Seiten | 310 |
Erscheinungsdatum | 2011-11-06 |
Verlag | Springer US |
Produktkennung
Artikelnummer | m0000P8L3X |
EAN | 9781461381952 |
GTIN | 09781461381952 |
Zusatzinfo und Downloads
Details zur Produktsicherheit
Herstellerinformationen |
Verantwortliche Person für die EU |